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Abstract. In the case of 2D optical patterns, frustration comes from the interplay between the physical
constraints (light-matter interaction) and the geometrical constraints (cavity length and structure). De-
pending on the dynamical parameters, we are able to single out two distinct behaviors. For small diffusion
and close to threshold, the system is forced to fulfill the geometrical constraints giving rise to a phase
dynamics of quasicrystals. For larger diffusion, the system fragmentates into spatial domains giving rise to
a competition between different patterns. By means of a geometrical argument, we show that the spatial
distribution of domains is related to the symmetry imposed by the geometrical constraint and that the
domain borders are disinclination defects. These defects being the nucleation centers of spatial domains,

they trigger the onset of pattern competition.

PACS. 42.60.Jf Beam characteristics: profile, intensity, and power; spatial pattern formation —
42.79.Kr Display devices, liquid-crystal devices — 42.65.Pc Optical bistability, multistability, and switching

1 Introduction

In the Euclidean space, it is well-known that only the ro-
tations of order 2, 3, 4, and 6 are compatible with trans-
lations in order to obtain a perfect tessellation. Indeed,
a tessellation is a perfect tiling with only one elementary
pattern for a given space with given curvature and dimen-
sion. Examples of tessellations in a two-dimensional space
can be find in Escher’s paintings [1].

Geometrical frustration [2] arises from the impossibil-
ity to tessellate the Euclidean space with a N > 4 order ro-
tation patterns. For this types of rotation order patterns,
disinclination defects appear. Indeed, a disinclination de-
fect is associated to the breaking of a rotation symmetry,
as well as a dislocation is associated to the breaking of
a translation symmetry. A disinclination defect may be
generated by cutting the structure along a line and by
adding (or subtracting) a part of the matter between the
two cuts. For example, it is not possible to make a per-
fect tiling, i.e. a tessellation, of the plane with regular
pentagons because of the pentagon inner angles. Indeed,
if five pentagons are surrounding a central one, there will
be spacements (cuts) between two neighboring pentagons.
These spacements are disinclination defects. The border of
the cuts are equivalent under the effect of the N-order ro-
tation related to the symmetry of the underlying pattern.
So, in our example, there are five cuts surrounding the
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central pentagon, and these five cuts are equivalent under
a 27 /5 rotation symmetry.

Geometrical frustration appears in quasicrystals, as
well as in several classes of crystals like the Frank-Kasper
phases [3,4], and in complex fluids like the cholesteric blue
phases [5]. Optical pattern formation has been demon-
strated as a fruitful area for the study of nonlinear phe-
nomena and symmetry selection problems, showing strong
analogies with other areas as fluid dynamics, chemistry
and biology [6]. In particular, optics provides easily two-
dimensional patterns which arise from amplitude modu-
lation of the transverse profile of an optical beam as it
passes through a nonlinear medium [7]. Roll-hexagon tran-
sition [8], crystals and quasicrystals [9] and domain com-
petition of different patterns [10] have been reported for
a system based on a Liquid-Crystal-Light-Valve (LCLV)
with a nonlocal feedback [11].

We want to discuss here the problem of geometrical
frustration that can arise in this system when physical
and geometrical constraints are not commensurate. For
example, the feedback loop can impose a N-fold overall
symmetry which is incommensurate with the 3-fold sym-
metry naturally selected by the physical interactions. We
think that our considerations are not related to this spe-
cific system but that they can apply to any generic 2D
pattern forming system. The advantage of the experiment
LCLV with feedback, is that we can easily adjust and
control the degree of geometrical frustration we want to
impose to the system.
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We shall present the experimental setup and the theory
of the LCLV in Section 2. In Section 3, the 2D quasicrys-
tals, as well as the pattern competition, are shown and
discussed. We show that both the behaviors are a mani-
festation of geometrical frustration. And Section 4 is the
conclusion.

2 Experiments and LCLV theory

A LCLV is a essentially a mirror sandwiched between a
nematic liquid crystal layer and a photoconductive layer.
An AC voltage is applied between the photoconductor
and the liquid crystal layer. In the presence of light on
the photoconductor, the voltage drop across the liquid
crystal layer increases inducing a reorientation of the LC
molecules. For the reflected light, this reorientation pro-
duces a phase change. Transverse patterns in the optical
field are due to diffraction which converts the phase modu-
lation, generated within the LCLV, into amplitude modu-
lation. This latter one, on its turn, modifies the properties
of the LCLV. In this way, a positive feedback is realized
for all those spatial frequencies satisfying the resonance
conditions ¢?L/2k = 7/2,37/2, ..., where q is the field
transverse wavenumber, k = 27/ is the optical wavenum-
ber and L is the free propagation length. In our case
A = 632 nm is the wavelength of an He—Ne laser and L can
vary between 20 and 60 cm. The laser beam is expanded
up to a diameter of 2.5 cm which is the transverse size
of the LCLV. By inserting a circular diaphragm of 1 cm
diameter in front of the LCLV, only a central region is let
to be active so that the medium is uniformly illuminated.
Indeed, the intensity profile of the laser beam can be con-
sidered flat on its central region and it is not playing any
role in the stability of the observed patterns.

The natural symmetry of the transverse patterns here
arising is the hexagonal one, due to the quadratic charac-
ter of the light-matter interaction [12]. The fundamental
pattern size is the one satisfying the resonance condition,
that is

¢t = (AL)V2, (1)

that is, of the order of a few tenth of mm for the param-
eters currently set in the experiments.

The feedback is realized by means of a coherent opti-
cal fiber bundle. By twisting the bundle, the image on the
back of the LCLV can be rotated by any angle A = 27/N
with respect to the front image. This rotation impose an
overall N-fold symmetry which can or not be consistent
with the natural hexagonal symmetry provided by the
medium nonlinearity [8-12]. The geometrical frustration
comes from the interplay between the N-fold symmetry
imposed by the feedback rotation (boundary conditions)
and the 3-fold symmetry imposed by the light-matter
interaction (physical interaction).

Moreover, the feedback rotation angle permits to
destabilize all the successive bands provided by diffrac-
tion independently of the sign of the nonlinearity, i.e.

of whether we use a focusing or defocusing medium [9].
Normalizing to the basic wavenumber gy = /27 /VAL, all

4 =v2j+1 (2)

for j =0,1,2,3,... can be destabilized. In the real space,
this defines a characteristic length ¢; = 27/g;. In the
Fourier space (far field), this allows us to define Fourier
circles of radius ¢;. Excited modes are wavevectors lying
on these circles.

Actually, a frequency cutoff is imposed by the diffusion
length Ip intrinsic to the nonlinear medium. The marginal
stability curve versus ¢* is made of a series of bands (in-
stability balloons) whose minima lie on a line of slope
o~1 =12 /\L. More precisely, the marginal stability curve

is composed by two branches

Iy, = % for N even, (3)

Iin = % for N odd, (4)
and

Iy, = —% for N even or odd, (5)

where # = g¢®. The positive branches of these two curves
give the threshold value Ii;, of the input intensity re-
quired to excite a mode with a wavenumber ¢. The pos-
itive branches of this curve are represented in Figure 1
for N =5 and 7 and for the two cases of small diffusion
(o0 = 300) and large diffusion (¢ = 30).

Here, o is a nondimensional parameter measuring the
strength of diffraction with respect to diffusion. In our
setup o can be changed by varying the free propagation
length L. For large o successive minima are almost aligned
so that many unstable bands can be simultaneously ex-
cited as the input intensity goes slightly above the thresh-
old of the first band. In this situation, the observed pat-
terns can be quasicrystals or superlattices, depending on
whether or not geometrical frustration comes into play.

Superlattices [14] are complex crystals composed by
wavevectors lying on different Fourier circles, at variance
with simple crystals where couplings are established only
between wavevectors lying on the same Fourier circle. In
the LCLV experiment, superlattices are observed if N sat-
isfies the natural hexagonal symmetry (N = 0,3,6,...),
since in this case there is no geometrical frustration [13].
Superlattices are observed also for N = 2,4.8, ... where
the imposed 4-fold symmetry overcomes the hexagonal
one producing metastable superlattices of order 4. In this
case, as in the 3-fold case, there is no geometrical frustra-
tion since the quadratic couplings (giving rise to hexagons
when realized on a single circle) can be established over
different Fourier circles.
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Fig. 1. Marginal stability curve for N = 5,7 and for (a) o =
300 and (b) o = 30.

3 Geometrical frustration in LCLV patterns:
results and discussion

Aslong as N is odd and different from 3, we have geomet-
rical frustration. In this case even if many Fourier circles
can be simultaneously excited, it is not possible to fulfill
the geometrical constraint by realizing quadratic couplings
between wavevectors lying on different circles. Moreover,
when the system is close to the threshold, the wavevectors
lengths are close to the values corresponding to the min-
ima of the marginal stability curve. Then, the patterns are
quasicrystals composed by wavevectors lying on successive
Fourier circles with incommensurate radii [9]. In this case,
the observed patterns have an N-fold rotational order and
a quasiperiodic instead of periodic translational order.

The geometrical frustration manifests itself as a phase
dynamics characterized by a few modes alternating in
time. These modes are global phasons corresponding to
spatial configurations realized with a given phase differ-
ence between wavevectors lying on the excited Fourier
circles. Different phasons correspond to different images
in the near field whereas the far-field (Fourier circles) re-
mains unchanged. We show in Figure 2 an example of
phasons in the case of N =7 .

When diffusion increases (low o), only the first two
branches of the marginal stability curve have almost
aligned minima (see Fig. 1b). In this situation, and close
to threshold, only two Fourier circles can be simultane-
ously excited, corresponding to the minimum of the first
N-dependent branch and to the minimum of the first N-
independent branch. The patterns associated with these

Fig. 2. Quasicrystalline patterns observed in the LCLV exper-
iment for N = 7. The same far-field shown in (a) corresponds
to different near fields as shown in (b), (¢) and (d). These
images correspond to phason modes, i.e., different patterns
realized with different phase relationships between the same
wavevectors.

two minima have, respectively, a characteristic length
scale £y = 27 /qo and ¢ = 27/q;.

Moreover, the two patterns are qualitatively differ-
ent. Indeed, to the N-dependent branches is associated
an eigenvalue with a non-zero imaginary part which adds
a rotation in time of the selected wavevector [9]. The cor-
responding pattern is composed of rolls whose orienta-
tion rotates in the course of time. On the contrary, the
eigenvalue associated to the NN-independent branches is
purely real so that the corresponding pattern is composed
of steady hexagons [9,12].

The excitation of successive Fourier circles becoming
energetically too expensive, geometrical frustration is now
expressed in a different way. Instead of realizing quasicrys-
talline configurations, the system alternates between the
two first unstable bands, giving rise to a spatio-temporal
competition between the two associated patterns, that is,
between hexagons and rolls [10]. Experimental snapshots
showing the simultaneous presence of the two patterns
onto different spatial domains are reported in Figures 3
and 4 for N =5 and 7 respectively.

A qualitative explanation of this behavior can be given
on the basis of geometrical considerations. Indeed, because
of geometrical frustration, as one pattern bifurcates from
threshold, it presents defects. These defects are centers of
nucleation for the other pattern, so that spatial domains
of rolls grow inside hexagons and vice versa. To account
for domain distribution, we have to fill the active area
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Fig. 3. Domain formation for N = 5 (experimental images).
Disinclination lines arise in the (a) hexagons and (b) rolls pat-
terns. We show in (c) a section of a 2D hyperboloid H?. For
a point located in coordinates (a;1/a), we report its distance
from the H? symmetry axis (dot-dashed line) together with
its distance on H? (solid line on the H? section). We show in
(d) H? unfolded on the plane by respecting a 5-fold symme-
try. Black areas represent the disinclinations which arise from
the five cuts that we need to operate in order to eliminate the
non-zero curvature of H2.

Fig. 4. Domain competition for N = 7 (experimental im-
ages). (a, b) Rolls and hexagons exchange their stability nucle-
ating from the disinclination defects. (¢, d) Same images with
disinclination borders marked by white lines.

of the LCLV by combining two symmetries of rotation:
the 3-fold symmetry, which is naturally selected by the
quadratic nature of the light-matter interaction, and the
N-fold symmetry which is imposed by the rotation in
the feedback loop. By selecting N = 5, or N = 7, we
are dealing with two incommensurate symmetries.

In other words, geometrical frustration comes from the
fact that we have to fit hexagons on a 5-fold, or 7-fold
symmetry. As long as hexagons are a tessellation of the
plane in the Euclidean space, it is not possible to tessellate
the same plane with a 5-fold (resp. 7-fold) symmetry. This
tessellation becomes possible on a 2D hyperboloid, H2.
We will define here H? as a two dimensional hyperboloid
plunged in the 3D real space. So the definition of the H?
plane corresponds here to a surface obtained by rotating
a 1D hyperbole around its symmetry axis (see Fig. 3c).

Once the tessellation has been made, one has to un-
fold H? on the plane in order to recover the geometrical
features of the spatial domains in the LCLV patterns. In-
deed, H? is built in the 3D real space and has a constant
negative curvature. As we show in Figure 3c, if we use the
metric of the 3D real space R on H?, a point of Cartesian
coordinates (a;1/a) (black point) will be located on a cir-
cle of radius (a? —1)/2a (dot-dashed line), centered on the
symmetry axis of H? (dashed line). Thus the perimeter of
this circle is equal to 27(a? — 1)/2a. When unfolding H?,
the point located on (a;1/a) will be at a distance (Ina) of
the top of H? (this distance is represented by a solid line).
Thus on a circle of perimeter 27 In a. Cuts will appear in
the unfolded H? as soon as Ina — (a? — 1)/2a > f or
{1 depending on whether the basic pattern is prevalently
composed by hexagons (basic length £y) or rolls (basic
length £7).

A rough approximation of the unfolding of H? is the
crash of an empty egg shell: if we apply an uniaxial pres-
sure on an half empty egg shell, this one will break into
pieces in order to adapt its curvature to the curvature of
a plane. The same phenomenon will happen for our hy-
perboloid: the underlying patterns (hexagons or rolls) will
keep their geometry but there will appear cuts between
them. In our case, these cuts will respect the underlying
N-fold symmetry, as we show in Figure 3d for N = 5.
One has to add that the cuts are not necessarily straight
from the center of the hyperboloid, as one may see in the
following.

Let us define R as the distance from one point of H? to
the center of the hyperboloid. As an example, our point
located in (a;1/a) is at a distance R = Ina. Hence, a
disinclination defect will appear as soon as the distance
R —¢; (j =1 for hexagons and j = 0 for rolls) is equal
to (exp(2R) — 1)/2exp(R). Indeed, when unfolding H?2,
cuts appear in this unfolded space, because unfolding cor-
responds to a transformation from a non zero curvature
to a zero one. The inside of the cuts may then be filled
with patterns which corresponds to the physical charac-
teristics of the LCLV (hexagons or rolls). It is clear , as in
all disinclinations defects, that the boundaries of the cuts
respect the order of symmetry of the H? tessellation [2].
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Now, we can see on the figures that hexagons, or rolls,
are distributed over spatial domains which present a 5-
fold (7-fold) symmetry. These domains can be thought of
as the elementary pentagons (heptagons) which tessellate
H?. The cuts between adjacent domains are the disincli-
nations defects coming from the unfolding procedure of
H? over the plane.

Figure 3a corresponds to a low excitation energy of
the marginal stability curve and to N = 5. Hexagons are
here dominant. Leaving the center and going outwards,
geometrical frustration appears: there are hexagons reg-
ularly tiling the inside of five large pentagons. When the
cuts in the hyperboloid become larger than the size £y of
the rolls, disinclination defects appear, i.e. the borders of
the previous five large pentagons are filled with rolls. The
borders of the regions tiled with hexagons correspond to
a 5-fold symmetry (presence of 5 branches). Besides ¢;,
the characteristic length of hexagons, a larger length ap-
pears which is related to the 5-fold symmetry and which
is the characteristic size of domains. Indeed, hexagons are
distributed over five large domains separated by disincli-
nation defects.

In Figure 3b, the input intensity is higher and £y, the
characteristic length of rolls, is dominant. Here the pattern
adapts itself to adjust at best a 5-fold tiling with rolls. The
3-fold symmetry is appearing in the outer region (presence
of hexagons) and may once again associated with disincli-
nation defects. Indeed, in the outer region the value of
R — (exp(2R) — 1)/2exp(R) is larger than the size ¢; of
the hexagons which are filling these disinclination defects.

We have to add that in both the cases of Figures 3a
and 3b, in the center of the pattern there is a region com-
posed of hexagons which are arranged in a 5-fold symme-
try, even when the rolls are dominant. Indeed, this central
region is not large enough to accommodate rolls in a 5-fold
symmetry, due to the fact that the size of rolls is larger
than the size over which the curvature of the plane and H?
almost coincide. This explains why it is always the hexag-
onal solution, that is characterized by a smaller length,
which fills the central region of the pattern.

Figure 4 correspond to the case N = 7. The input in-
tensity is adjusted in such a way that there is a continuous
competition between hexagons and rolls [10]. In Figure 4a
(correspondingly c) ¢1, the length of hexagons, is domi-
nant. In Figure 4b (correspondingly d) o, the length of
rolls, is dominant and it appears in seven large domains
of rolls. In both cases, that is, hexagons or rolls dominant,
the antagonistic solution is filling the disinclination de-
fects. In Figures 4c¢ and 4d, we show a processed version
of the experimental snapshots, where the borders of the
disinclination defects are marked by white lines. As said
before, the cuts are not necessarily straight.

The competition between £y and ¢; comes from a con-
tinuous nucleation of one pattern into the other. The nu-
cleation centers are the disinclination defects generated
by the geometrical frustration. The images correspond
to a tiling which is the closest to a regular tiling of the
plane on which a 7-fold symmetry has been applied. Spa-
tial domains reflects the 7-fold symmetry which has been

imposed by the rotation in the feedback loop. Disinclina-
tion defects are the cuts resulting from the matching of
the unfolded H? with the plane.

As a summary, the tiling of Figure 3 (4) corresponds
to the 5-fold (7-fold) symmetry in the center of the LCLV
active area. There is a singular region in the center of the
unfolded H? where it is not possible to make a tessella-
tion with rolls (due to their size). So, even when the rolls
are dominant, the central region of the images is filled
with hexagons adjusting a 5-fold (resp7-fold) symmetry.
As soon as we move away from the center, disinclination
defects appear which are filled respectively with rolls or
hexagons, at variance with the surrounding pattern. The
domain boundaries correspond to the borders of the cuts
of the unfolded H2. As a whole, the 5 (7-fold) symme-
try is respected and conserved during the pattern com-
petition. Spatial domains grow from disinclination defects
and they are tiled with rolls or hexagons, with a continu-
ous exchange between the two patterns.

4 Conclusion

The LCLV experiment allows to obtain geometrically frus-
trated optical patterns. We have shown that, depending on
the dynamical parameters, geometrical frustration gives
rise to two distinct behaviors.

For large o (small diffusion) many elementary
wavenumbers can be simultaneously excited, so that pat-
terns are two-dimensional quasicrystals. In this case, geo-
metrical frustration manifests itself as a phase dynamics.
An alternation between a few phason modes is observed.

For small o (large diffusion), and close to threshold,
only two wavenumbers are excited. The corresponding
modes are rotating rolls and steady hexagons. Geomet-
rical frustration gives rise to a fragmentation into spa-
tial domains leading to a competition between rolls and
hexagons. The spatial arrangement of domains reflects the
N-fold symmetry imposed by the geometrical constraints
(rotation in the optical feedback loop). By selecting N odd
and different from 3, frustration comes from the combina-
tion of the N-fold symmetry with the 3-fold symmetry
naturally selected by the light-matter interaction.

The matching between these two symmetries can be re-
alized by unfolding on the plane an hyperboloid, H?, over
which N-gons, with N > 4, constitutes a tessellation. The
matching cannot be perfect and leaves uncovered regions
between the N cuts. These regions are disinclinations de-
fects. Spatial domains of rolls (hexagons) into hexagons
(rolls) grow from the disinclination defects, leading to a
continuous competition between hexagons and rolls.
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